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ABSTRACT: Low-cost sensors (LCSs) for air quality monitoring have enormous potential to
improve air quality data coverage in resource-limited parts of the world such as sub-Saharan Africa.
LCSs, however, are affected by environment and source conditions. To establish high-quality data,
LCSs must be collocated and calibrated with reference grade PM2.5 monitors. From March 2020, a
low-cost PurpleAir PM2.5 monitor was collocated with a Met One Beta Attenuation Monitor 1020 in
Accra, Ghana. While previous studies have shown that multiple linear regression (MLR) and random
forest regression (RF) can improve accuracy and correlation between PurpleAir and reference data,
MLR and RF yielded suboptimal improvement in the Accra collocation (R2 = 0.81 and R2 = 0.81,
respectively). We present the first application of Gaussian mixture regression (GMR) to air quality
data calibration and demonstrate improvement over traditional methods by increasing the collocated
PM2.5 correlation and accuracy to R2 = 0.88 and MAE = 2.2 μg m−3. Gaussian mixture models
(GMMs) are a probability density estimator and clustering method from which nonlinear regressions
that tolerate missing inputs can be derived. We find that even when given missing inputs, GMR
provides better correlation than MLR and RF performed with complete data. GMR also allows us to
estimate calibration certainty. When evaluated, 95% confidence intervals agreed with reference PM2.5 data 96% of the time,
suggesting that the model accurately assesses its own confidence. Additionally, clustering within the GMM is consistent with climate
characteristics, providing confidence that the calibration approach can learn underlying relationships in data.

KEYWORDS: low-cost sensors, particulate matter, air quality, Africa, Gaussian mixture regression

1. INTRODUCTION

In 2019, ambient air pollution ranked fourth globally out of
mortality risk factors, causing nearly 6.75 million premature
deaths, with over 4 million of these deaths attributed to
ambient PM2.5, particulate matter mass concentrations for
particles with diameters less than 2.5 μm.1 Sparse air pollution
monitoring, however, creates high uncertainty for estimates of
exposure and impact.2 Low-cost sensors (LCSs) have great
potential for the improvement of air quality data coverage in
resource-limited parts of the world such as sub-Saharan Africa.3

LCSs, however, are sensitive to many factors including
temperature, relative humidity, emissions source, and sensor
aging.4−7 By placing a LCS directly adjacent to a reference
grade monitor, or collocating, calibration models can be used
to develop correction factors for LCSs and establish high-
quality data.
Various methods have been used to perform in-field

calibrations for a variety of LCSs. The most studied method
has been multiple linear regression (MLR), which is advanta-
geous due to its simple, transparent nature.8−12 Due to the
complexity of atmospheric chemistry, however, it is important
that the calibration method used can capture nonlinear
relationships, which MLR is not able to do. For example,
hygroscopicity, which causes particles to grow by absorbing

water, is a nonlinear function of humidity.13 Thus, nonlinear
approaches such as random forest (RF) and k-nearest
neighbors models have also been used to calibrate
LCSs.11,12,14,15 While both of these methods are able to
capture complicated nonlinear relationships, application of the
model beyond the training data is difficult. Another method
that has been applied to LCS calibration is Gaussian process
regression (GPR) which is advantageous due to its ability to
successfully handle missing or incomplete data. While Nowack
et al. found the application of GPR to LCS data to be
successful, Malings et al. found that the high dimensional
nature of the model created risks of overfitting.12,16 Artificial
neural networks have also been studied as a method to
calibrate LCS.12,17 Although neural networks are extremely
versatile and are able to capture almost any nonlinear
relationship, they require large amounts of training data
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which is not always accessible, particularly when working in the
context of the air quality data gap in sub-Saharan Africa.
Gaussian mixture models (GMMs) are a method that

models the joint probability density of input and output data as
a mixture of Gaussian distributions.18 GMMs have been shown
to smoothly approximate almost any continuous probability
density, including non-Gaussian data.19,20 This is ideal when
working with LCS data which can contain many distinct,
complex relationships between variables, such as climate,
aerosol type, and season, that cannot be represented by a single
Gaussian. GMMs may be able to detect these heterogeneous
relationships and appropriately cluster model components so
they can be represented by normal distributions. GMMs have
been successfully implemented in a variety of fields including
speech recognition and robotic learning.20,21 Recently, GMMs
have also been used in geophysical data analysis to accompany
atmospheric Lagrangian particle dispersion models.22

Gaussian mixture regression (GMR), first proposed in
Ghahramani and Jordan (1993), works by modeling the
probability density of the output data conditional to the input
data as a GMM.23 GMR does not directly model the regression
function but rather derives the regression from the joint
density model described by an initial GMM. The probabilistic
nature of this method is what allows it to capture complex,
nonlinear relationships. Given an input value, the regressed
output value is a linear combination of nonlinear regressions
performed on the mixture of Gaussians generated by the
GMM. Each regression performed within a Gaussian
component is predicated by a weight that describes the
probability that the given input value belongs to the respective
distribution. A key advantage of GMR is that it can handle
missing data from unobserved explanatory variables. Regres-
sion can be performed on any subset of input-output data,
which is ideal given the lack of air pollution data available in
sub-Saharan Africa.
While GPR can also handle missing data, GMR contrasts

GPR by treating the distribution of the data as multiple
independent Gaussians. This allows GMR to better capture
heterogeneous relationships when compared to GPR. These
models also differ with respect to their treatment of time. In
GMR, time-correlations between successive measurements are
neglected, whereas GPR attempts to account for these
correlations. Additionally, with GPR, the model user must
specify their own priors based on existing understandings of
relationships between explanatory variables. This contrasts
GMR where priors are calculated with an expectation
maximization algorithm. This makes GMR more accessible
for applications without pre-existing knowledge of relation-
ships within the data.
GMR has been used in the area of robot programming.26−28

Newer applications of GMR include soft sensor technology as
well as breast cancer prognosis predictions.29,30 To our
knowledge, GMR has yet to be used in air quality data
calibration.
Here, we present a GMR calibration model for a LCS

(PurpleAir monitor) to a United States Environmental
Protection Agency Federal Equivalent Method (FEM)
reference monitor (Met One beta attenuation monitor 1020)
during collocation in Accra, Ghana. This collocation showed
moderate initial correlation and moderate accuracy between
reference and PurpleAir PM2.5 data, indicating a need for
calibration. Both MLR and random forest methods provided
suboptimal improvement in correlation and accuracy, motivat-

ing the need for alternative calibration methods. Given GMR’s
ability to capture complex nonlinear relationships, handle
missing data, and employ metrics able to reduce the risk of
overfitting, it was chosen for this collocation. Here we first
develop a GMR model using PurpleAir PM2.5, temperature,
and relative humidity (RH) data. We then evaluate the
regressor’s effectiveness with missing data. Additionally, we
evaluate the GMM components in terms of its explanatory
variables and seasonality to better understand LCS condition
sensitivities. Finally, we evaluate the GMR model performance
against MLR and RF performance.

2. METHODS
2.1. Sampling Location and Technology. A PurpleAir

PA-II-SD low-cost PM2.5 device (https://www.purpleair.com/
) was deployed at the U.S. embassy in Accra, located at 5.58 N
latitude and 0.17 W longitude, in the Cantonments
neighborhood of Accra. PurpleAir monitor sampling began
on March 1, 2020 and continues through the present. In
addition, in January of 2020, a MetOne beta attenuation
monitor (BAM) 1020 was located at the U.S. Embassy in
Accra, providing a reference point for the PurpleAir monitor
(https://www.airnow.gov/international/us-embassies-and-
consulates/, last accessed 2021-05-28). For our calibration, we
use the overlapping data set of BAM-1020 and PurpleAir from
March 2020 to March 2021.
A PA-II sensor costs approximately $250 USD, which is

nearly 100 times cheaper than reference PM2.5 monitors. Their
cost makes PurpleAir monitors an attractive tool to address the
air pollution data gap. PurpleAir PM2.5 has been shown to
strongly correlate with reference grade monitors (R2 > 0.8),
subject to biases at high temperatures and relative humid-
ity.5,31,32 Accordingly, to achieve high quality data, PurpleAir
monitors require careful field calibration.
PurpleAir monitors use dual Plantower PMS 5003 optical

sensors to estimate PM2.5 mass concentrations. Within each
PurpleAir monitor, there are two sensors, labeled A and B,
which measure PM mass concentrations at 120 s intervals. The
PM2.5 concentrations used in this study are the calculated
averages of the concentrations reported by sensors A and B at
each 120 s time interval. Previous work has suggested that
these optical sensors function as nephelometers and report
particle concentrations in six size bins, ranging from 300 nm to
10 μm, at 120 s intervals.33 A proprietary algorithm converts
raw sensor measurements to PM1, PM2.5, and PM10 mass using
assumptions about particle shape and density. The PMS 5003
reports PM2.5 values with correction factors (CFs). In this
study, we use the “CF = ATM” PurpleAir PM2.5 data field,
which is actually the “CF = 1” data field due to mislabeling of
columns by PurpleAir. While PurpleAir corrected this issue as
related to its online data in late 2019, in this study the firmware
updates from PurpleAir were never pushed to the offline device
as we use PurpleAir data directly from the SD card due a lack
of connectivity at the site. The CF = 1 data, unlike the other
CF, is not transformed nonlinearly, which makes the CF = 1
data field a more appropriate raw input into regression models.
Internal temperature, pressure, and RH are estimated by a
Bosch BME280. Wireless connectivity is generally used to
transmit data in real-time; however, in this study, due to lack of
connectivity at the site, the sensors were operated in an offline
mode.

2.2. Data Preparation. Data used included temperature,
RH, and PM2.5 data from a PurpleAir-II sensor. Hourly
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recorded PM2.5 concentrations from a BAM-1020 were used as
reference PM2.5 values. Data were collected from March 2,
2020 to March 5, 2021. PurpleAir data from September 5,
2020 to September 24, 2020 were missing. This left 349 paired
daily averaged BAM-PurpleAir data points. Models were built
with the entirety of paired data points.
Data were cleaned by removing values outside the

constraints of physical limitations. The maximum temperature
in Accra, Ghana recorded from March 2020 to March 2021
was 32 °C and the minimum temperature was 23 °C.34 Bosch
BME280 sensors have been shown to report higher temper-
atures than ambient temperature values.5,32,35 Accordingly, the
data was restricted to PurpleAir temperature values between 16
and 49 °C. This removed 9 of 221 988 observations. Values
with PurpleAir RH greater than 100% were also removed from
the data set. This removed 4 of 221 988 observations.
Observations with differences between PurpleAir sensors A
and B greater than 20 μg m−3 were removed from the data set.
This was decided by visual inspection of the data. This
removed 23 of 221 988 observations. Hourly reference grade
data was subset to only include positive values less than 350 μg
m−3, based on the March 2018−June 2020 maximum recorded
hourly PM2.5 of 340 μg m−3 in Kinshasa, DRC, another sub-
Saharan African city.11 This removed 24 of 9 396 hourly
reference observations.
2.3. Gaussian Mixture Regression. 2.3.1. Gaussian

Mixture Models. Gaussian mixture models (GMMs) are a
probability density estimator that can be used for clustering
analysis.18 Unlike other methods that group observations by
similarity, GMMs model the joint probability density of the
data as a mixture of normal distributions. At any given value,
the probability density associated with an observation will have
its own composition of the Gaussian components that make up
the GMM. This composition is described with the probabilities
that a given observation belongs to the distribution of each
respective model component.
The observed data consist of N time points {x1, ..., xN} each

containing D features such as temperature, RH, and PurpleAir
PM2.5. Let X be an N × D matrix containing these data. We
define dimensions of with input and output features as XI and
XO, respectively. If each data point, xn can be represented by a
single multivariate Gaussian distribution, then the probability
density function for the data matrix X is given by eq 1.

∏μ μ μ| Σ = | Σ = | Σ
=

p X p X X x( , ) ( , , ) ( , )
n

N

n
I O

1 (1)

Here, μ is the mean vector and Σ is the covariance matrix of a
Gaussian distribution (denoted with ). If X is from a
multimodal distribution, as assumed in the case of GMMs, the
probability density function is given by eq 2.18

∏ ∑ μ|Ω = | Σ
= =

p X h x( ) ( , )
n

N

k

K

k n k k
1 1 (2)

Here, K is the number of components in the GMM and hk is
the probabilistic weight of the kth component (i.e., a number
between 0 and 1, where ∑k = 1

K hk = 1). The entirety of
parameters describing the GMM is then given by eq 3.

μ μ μΩ = {{ Σ } { Σ } { Σ }}h h h, , , , , , ... , ,K K K1 1 1 2 2 2 (3)

2.3.2. Expectation Maximization Algorithm. To build a
GMM, we search for the most probable mixture of Gaussian

distributions that represent the data.18 We seek the maximum
likelihood estimate of the model parameters, Ω*, described by
eq 4.

Ω* = [ |Ω ]Ω p Xargmax ( ) (4)

Given an initial set of parameters, where in this case Ω is
initialized by random sampling of the data series, we can apply
an expectation maximization algorithm proposed by Ghahra-
mani and Jordan.23 By successively applying the expectation
step (E-step) and maximization step (M-step), we can find Ω*.
The E-step evaluates the “responsibilities” of the model based
on Ω. The responsibilities in a GMM are the likelihoods that a
given point is characterized by a given model component. The
M-step then updates the model parameters Ω. In this
procedure, we introduce a latent variable z which is formulated
in eq 5.

=z
x k1 if in component

0 otherwise
nk

n
l
moo
noo (5)

The probability that xn is in component k, p(znk = 1), is
expressed by hk. With this expression, the E-step can calculate
the responsibilities of the model, γ, which is expressed by eq 6.

γ = = | =
| = =

∑ | = ==

z x
p x z p z

p x z p z
p( 1 )

( 1) ( 1)

( 1) ( 1)nk nk n
n nk nk

j
K

n nj nj1 (6)

The maximization step then uses the responsibilities, γ, to
calculate parameters Ω* that maximize the likelihood function
of eq 2. Briefly, we differentiate the logarithm of the likelihood
with respect to each parameter and set the results equal to
zero. We then solve for the model parameters to obtain eqs
7−9 for the M-step.

μ
γ

γ
=

∑

∑
=

=

x
k

n
N

nk n

n
N

nk

1

1 (7)

γ μ μ

γ
Σ =

∑ − −

∑
=

=

x x( )( )
k

n
N

nk n k n k
T

n
N

nk

1

1 (8)

γ
=

∑ =h
Nk

n
N

nk1
(9)

We iterate between the E-step of eq 6 and the M-step of eqs
7−9 until the parameters have converged to their maximum
likelihood estimates. This is the point where the model
responsibilities, γ, have stopped changing in value.

2.3.3. Gaussian Mixture Regression. The fitted mixture
model can now be used to predict the missing features of a
data point x conditioned on the knowledge of the other
features. We refer to the known features of the data point as
input xI and the unknown features as output xO. In the present
context, we seek to estimate missing output data for reference
grade PM2.5 given input data for PurpleAir PM2.5, temperature
and relative humidity. GMR uses the information obtained
from modeling the joint probability distribution of the data,
p(xI, xO|Ω), to estimate the conditional probability distribution
for the output data given the input data, p(xO|xI, Ω). The
regressed value is taken as a linear combination of the means of
the posteriors from the conditional distributions of the output
given the input from each component of the GMM.23 Notably,
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these distributions can be conditioned over any subset of input
values, allowing the model to handle instances of missing data.
The conditional distribution, p(xO|xI, Ω), for the output xO

given the input xI is related to the joint distribution p(xI, xO|Ω)
and the marginal distribution p(xI | Ω) by the product rule of
probability theory as formulated in eq 10.

∑ μ| Ω =
|Ω

|Ω
= ̂ ̂ Σ̂

=

p x x
p x x

p x
h( , )

( , )
( )

( , )
k

K

k k k
O I

I O

I
1 (10)

Importantly, this conditional distribution is also a Gaussian
mixture of K components with probabilistic weights ĥk, mean
vectors μ̂k, and covariance matrices Σ̂k. The parameters of the
conditional distribution, {ĥk, μ̂k, Σ̂k}, are related to those of the
GMM, Ω = {hk, μk, Σk}, by eqs 11−13.23

μ μ μ̂ = + Σ Σ −
−

x( )k k k k k
O OI I I I1

(11)

Σ̂ = Σ + Σ Σ Σ
−

k k k k k
O OI I IO1

(12)

μ

μ
̂ =

| Σ

∑ | Σ=

h
h x

h x

( , )

( , )
k

k k k

k
K

k k k

I I I

1
I I I

(13)

Here, the D-dimensional mean vector μk and the D × D
covariance matrix Σk for the kth mixture component are
decomposed in parts corresponding to the input and output
features as

μ
μ

μ
=k

k

k

I

O

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ (14)

and

Σ =
Σ Σ

Σ Σ
k

k k

k k

I IO

OI O

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (15)

Our final predicted output value is then represented by the
expectation and the covariance given by eqs 16 and 17.

∑ μ= ̂ ̂
=

 x h( )
k

K

k k
O

1 (16)

∑ μ μ= ̂ Σ̂ + ̂ ̂ −
=

 x x h x xcov( , ) ( ) ( ) ( )
k

K

k k k k
T TO O

1

O O

(17)

where the covariance is derived by the law of total covariance.
Importantly, this is no longer the covariance of a Gaussian
distribution but of the posterior conditional GMM.
A sketch of the GMR process is presented in Figure 1. The

model responsibilities, ĥk, represented by eq 13, can be seen on
the plot at the top of Figure 1. The purple and teal
distributions in the plot on the far right of Figure 1 represent
the conditional distributions of the output as expressed by eq
10. These conditional distributions are derived based on mean
and covariance information gained from the expectation
maximization algorithm (described in section 2.3.2) which
characterizes the joint probability distribution of the input and
output data. These joint distributions are represented by eq 1
and are shown in the bottom left plot in Figure 1. The peak of
the conditional distributions in the far-right plot correspond to
the mean of the respective conditional distributions.

Combining the mean of the conditional distributions with
the model responsibilities, as formulated as in eq 16, gives us
our predicted output value. This value is represented by the
pink dot in the plot on the far left of Figure 1.

2.3.4. Model Implementation. An important consideration
when using GMR is selecting the number of model
components. Selecting too few components results in under-
fitting, while selecting too many creates a risk of overfitting the
data. Various methods, including the Bayesian information
criterion (BIC) and the minimum message length (MML),
have been proposed to determine the ideal number of
components in a model without succumbing to overfitting.24,25

Here, the Bayesian information criterion (BIC) was used to
select the number of model components. The BIC evaluates a
model’s likelihood while introducing a penalty term for
increasing parameters, helping address concerns of overfitting
as well as model efficiency.25 The number of components
which minimizes the BIC is the most appropriate number of
components for the model. This method of model selection
has been used for GMMs in both Calinon et al. and Yuan et
al.27,29 Using the Sci-kit learn library in Python, the BIC was
evaluated for GMMs built on training data with 1−10
components. These GMMs were built with daily averaged
PurpleAir PM2.5, reference grade PM2.5, temperature, and RH
data.
k-Fold cross validation is a method of cross validation that

has previously been employed across LCS applications.36,37 k-
Fold cross validation works by splitting the sample into a
number of folds and iteratively training the data on all but one
fold. While k-fold cross validation has been suggested to
introduce less bias than a simple training and testing data split
when evaluating a model, it provides unique challenges when
working with GMR. The first challenge is how to develop a
singular set of model parameters as it is difficult to confirm the
alignment of clusters generated from different training folds.
To resolve this challenge, we employed an 80/20 training/
testing data split for the purpose of generating model
parameters and within the training data employed a 10-fold
cross validation for model evaluation. It is important to choose

Figure 1. Sketch of a GMR performed on a GMM with two
components, represented by teal and purple. The purple and teal ovals
represent the joint probability distribution of the input and output
data modeled by each component of the GMM. The probability that
the specified input, xI*, is in either model component is represented
by ĥk. The probability of the output given the new input value, xI*, for
each component is shown in the plot of p(xO|xI*) in purple and teal.
The pink distribution on the plot of p(xO|xI*) represents the
conditional distribution of the output at point xI* from which we can
derive the final predicted value, μ̂, shown by a pink dot.
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sufficient folds for cross validating a GMR as the smaller the
training set or the less the overlap between training sets, the
greater the difference in the probability distributions of each
training set. This would lead to a poor evaluation of the larger
training set that generated the model parameters used for
analysis. Performing a 10-fold cross validation process within
the 80% training split resulted in each training fold
compromising 72% of the entire data set. This is comparable
to performing a 5-fold cross validation on the entire data set,
where each training fold would compromise 80% of the data
set, as done in previous studies.37

The second challenge is how to determine the number of
model components to use within each training set. As each
training set is best modeled by different probability
distributions, the BIC for each training set differs. Accordingly,
the results generated using a uniform number of model
components during cross validation may be poor and
misleading. To address this issue, we evaluated the BIC within
each training fold and performed a GMR using the number of
components suggested by the fold’s criterion.
Multiple regressions were performed using daily averaged

reference grade PM2.5 as the output and using various subsets
of daily averaged PurpleAir PM2.5, temperature, and RH as
inputs. Previous studies have shown that PurpleAir PM2.5

correlates well with reference data motivating the use of
PurpleAir PM2.5 as an explanatory variable.11 Relative humidity
was selected because it has been shown to influence LCS
performance due to hygroscopic growth of particles.31

Temperature was selected because particulate concentrations
may vary seasonally and temperature may provide insight into
seasonality.6,7,11,12

The GMM was built and the regression was performed with
Alexander Fabisch’s gmr library in Python (https://github.
com/AlexanderFabisch/gmr). Training a GMM with 279
points and performing a regression on new data can be
written in as little as three lines of code and executed with a
computational time of 0.56 s. This can be compared to the
0.11 s it takes to train and apply a MLR model on the same
data. GMMs can be reproduced with this library by either
selecting the same random state or storing and reusing the
mean, covariance, and weight parameters generated by the
GMM. Similar to MLR, model application has a computational
time independent of the number of points used to train the
model. If training a significantly large GMM that requires more
notable computation time, one can simply adjust the
convergence condition of the expectation maximization
process.
The GMR output was evaluated based on the coefficient of

determination (R2), mean absolute error (MAE), bias-
corrected mean normalized absolute error (cvMAE), bias,
mean normalized bias (MNB), and 95% confidence intervals.
Formulations for model evaluation metrics can be found below
in eqs 18−22.
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μ= ±95%CI 1.96 SE (22)

where SE represents the standard error of the population or
the square root of the population variance, which can be
derived from the covariances generated by the GMR in eq 17.
Analyses performed here were done on daily averaged data
since FEM/FRM designation is only applicable to daily
averaged PM2.5.

38 To provide a more thorough evaluation of
GMR, however, we have also included an hourly model in the
Supporting Information.

2.4. Multiple Linear Regression. For comparison with
the GMR method outlined above, a multiple linear regression
(MLR) approach and a random forest approach (described in
section 2.5) were performed using Python’s SciKit Learn
package. Explanatory variable selection and cross validation
methodology mirror that of the GMR approach described in
section 2.3. The formulation for the model can be found below
in eq 23, which is similar to the methodology of Malings et al.
2020. The MLR model was evaluated based on R2, MAE,
cvMAE, bias, and MNB; as this is a deterministic model,
confidence intervals cannot be evaluated. Models were
generated using daily averaged data.

β β β β= + + ° +TPM PurpleAir PM ( C) RH(%)2.5 0 1 2.5 2 3
(23)

2.5. Random Forest. A random forest approach was also
used to correct PurpleAir PM2.5 data toward reference grade
PM2.5. A key advantage of random forest regression, in contrast
to MLR, is the model’s ability to capture nonlinear
relationships between variables.14 RF models work by
employing a large number of decision trees, each constructed
with a random bootstrapped sample from the training data set.
Decision trees are constructed with a set of hierarchical rules
that group inputs based on thresholds (specific conditions
which stratify the data). The thresholds on these trees are
called nodes. During the training, the tree nodes, the inputs to
which they are applied and the associated order of application
are calibrated. The final groupings of the input variables in a
given decision tree, the “leaves”, are then associated with the
mean of the respective output variables. To predict an output
given a new input, the rules developed during the training
phase are applied to the new data. The output value associated
with the resulting leaf becomes the prediction for that specific
tree. The final predication is the mean output of all the trees in
the model.
Here, we use a RF model constructed with 500 trees and

PurpleAir PM2.5 concentrations, temperature, and RH as input
variables. By using a large number of trees, each constructed
with a different assortment of values, the RF algorithm reduces
the risk of overfitting. Additionally, the number of variables
evaluated at each node can be determined by the model user.
As this value increases, so does model accuracy and risk of
overfitting. In this case, this value was set to one. We employ
the same cross validation methodology as explained in section
2.3. Analyses were conducted on daily averaged data. This
model was developed using Python’s Scikit Learn package. The
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RF model was evaluated based on R2, MAE, cvMAE, bias, and
MNB, as with the MLR.

3. RESULTS AND DISCUSSION

3.1. Raw Data. Daily averaged PurpleAir PM2.5 data
showed moderate initial correlation with reference grade PM2.5
data (R2 = 0.53) and moderate initial error (MAE = 6.2 μ m−3,
μ = 28.5 μg m−3). When visualized, the daily averaged raw data
displayed distinct periods of the PurpleAir monitor over-
predicting and underpredicting PM2.5 when compared to
reference grade data at the U.S. embassy in Accra. The
PurpleAir monitor consistently underpredicts from March to
May 2020 and then overpredicts from June to July 020. This is
visualized in Figure 2a, which presents the raw PurpleAir PM2.5
data, reference PM2.5 data, and GMR corrected PM2.5 data.
This observation of different performance regimes is a key
motivator to use a mixture model, as they are often applied to
help capture distinct, heterogeneous relationships in data.11

3.2. Daily Averaged Gaussian Mixture Regression Fit.
In order to select the ideal number of components for the
GMM, the BIC was evaluated for GMMs built on training data
with 1 to 10 components. The results of this analysis are
presented in Figure 3. The number of components which
minimize the BIC is considered ideal, supporting our choice of
building a GMM with four components.

Table 1 presents the correlation and resulting error
associated with GMRs conditioned on a four component
GMM built with daily averaged training PurpleAir PM2.5,
reference grade PM2.5, RH, and temperature data. GMR
models were conditioned on various subsets of inputs. The use
of all possible explanatory variables for which we had data as

Figure 2. Performance evaluation and calibration of PurpleAir PM2.5 data versus Federal Equivalent Method (FEM) PM2.5 data between March
2020 and March 2021 at the U.S. embassy in Accra, Ghana. In part A, raw daily data are shown in purple, FEM data in teal, and GMR corrected
low-cost sensor data in pink. Part B shows FEM data in teal, GMR corrected low-cost sensor data in pink, and 95% confidence intervals of daily
corrected PM2.5 values shaded in pink.

Figure 3. Bayesian information criterion evaluated for Gaussian
mixture models with 1 to 10 model components built with daily
averaged training data.
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inputs (PurpleAir PM2.5, RH, and temperature) yielded the
best fit within the 80/20 training/testing data split (R2 = 0.88,
MAE = 2.20 μg m−3, and bias = 0.43 μg m−3). The results of
the cross validation performed within the training data set are
discussed in section 3.4, and a table of the performance metrics
within each fold can be found in the Supporting Information.
In Figure 2, we plot daily averaged raw PurpleAir PM2.5 data,

reference PM2.5 data from the Accra U.S. embassy, and PM2.5
data corrected by the GMR model conditioned over PurpleAir
PM2.5, RH, and temperature data. In Figure 2a, we can see that
the corrected PM2.5 data have less definitive periods of
underpredicting and overpredicting PM2.5 when compared to
raw PurpleAir values. We can also observe a very close fit
between the corrected data and reference data in the initial six
months of the timeseries. In November 2020, when corrected
PM2.5 values begin to increase, partially due to a seasonal
reduction in precipitation and the onset of the Harmattan,
characterized by low RH and large amounts of wind, the error
between the corrected data and reference data begins to
increase as well. Despite the increase in error, the overall
distributions of the corrected data and reference data series
closely align. The mean of both the corrected data series and
the reference grade data series is 25.1 μg m−3 with the standard
deviations being 10.9 μg m−3 and 11.6 μg m−3, respectively.
This suggests that GMR is an effective tool for providing
accurate descriptive statistics of long-term variability in PM2.5.
Another advantage to GMR is its ability to estimate the

uncertainty of the model’s predictions. Figure 2b presents the
GMR-corrected PM2.5 values, their 95% confidence intervals
and reference grade PM2.5 values for the entire time series.
Confidence interval values range between ±3.4 μg m−3 and
±441 μg m−3. The median confidence interval for the data
series is only ±6.9 μg m−3. This is because the distribution of
confidence interval values is right skewed by dates later in the
time series. The wider confidence intervals are frequently
associated with months after October 2020 when both PM2.5
values and model error are larger. The reference grade PM2.5
data falls within the 95% confidence interval of the GMR
predictions 96% of the time, suggesting a high level of
reliability for the model.

A key advantage of GMR is the model’s ability to handle
missing inputs. Using the GMM built with all inputs and
removing all RH values from the GMR input yielded similar
results to removing all temperature values from the GMR
input. Both of these input subsets yielded better correlation
and accuracy than both MLR and RF methods performed with
all possible explanatory variables (Table 1). Using PurpleAir
PM2.5 alone as a GMR input, however, did not provide
improved correlation or accuracy when compared to MLR or
RF performed with all possible explanatory variables. These
statistics provide a lower bound for how well GMR can handle
missing inputs, as inputs were subset uniformly across the data
set. In reality, there in fact may be different inputs missing
across the data set when working with LCSs in real-time. Given
that LCSs may be sensitive to variables other than temperature
and RH, such as emission source profiles and aerosol size and
composition, the model’s ability to correct error despite
missing data for additional potential explanatory variables is
particularly notable.5,31,39

3.3. Daily Averaged Gaussian Mixture Model “Soft”
Assignments. There may be a relationship between
components within the GMR model and different climate
conditions. Ghana has a tropical climate with two rainy
seasons: from April through July and again in September and
October. This contrasts with the Harmattan which occurs from
late November to mid-March. In Figure 4, we analyze the

GMM responsibilities in the context of these seasons. Figure 4
presents the dates of the timeseries represented by the
Gaussian component to which they most probably belong,
i.e., the observation’s GMM soft assignment. These soft
assignments were made based on the original GMM
responsibilities conditioned on both input and output values.
These assignments are not that of the GMR calibration and are
not the responsibilities used in the regression. These
assignments, however, can be helpful to understand the
physical meaning behind the model’s components.
Model soft assignments roughly correlate with seasons in

Ghana. It is important to note that GMMs do not directly
group observations based on similarity but based on the
probability that they are characterized by the same normal
distribution. Therefore, it is not expected for there to be
perfect overlap between seasons and model soft assignments.
The organization of components, however, does help provide

Table 1. Statistics of Daily Averaged PM2.5 Data, MLR, RF,
and GMR Calibration Models

model model inputs R2

MAE
(μg
m−3) cvMAE

bias
(μg
m−3) MNB

raw data 0.53 6.2 0.24 3.4 0.14

GMR

PurpleAir PM2.5,
temperature,
RH

0.88 2.2 0.09 0.43 0.02

PurpleAir PM2.5,
temperature

0.85 2.5 0.10 0.85 0.04

PurpleAir PM2.5,
RH

0.83 2.4 0.10 0.35 0.02

PurpleAir PM2.5 0.74 3.2 0.13 0.29 0.01

MLR PurpleAir PM2.5,
temperature,
RH

0.81 2.8 0.12 0.71 0.03

random
forest

PurpleAir PM2.5,
temperature,
RH

0.81 2.7 0.11 0.98 0.04

Figure 4. Calendar representation of GMM soft assignments
prescribed by the component with the largest responsibility given
an observation. Component 1 is shown in pink, component 2 in teal,
component 3 in purple, and component 4 in orange.
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information on when in the year different LCS-reference grade
correlations begin.
Observations in mid-June through July, the peak of the first

rainy season, seem to have the most consistent model soft
assignments, noted in Figure 4 by component 1 in pink. The
November to February period, which encapsulates the
Harmattan and was previously described as having a more
notable error, is represented by component 4 in orange. This
component also coincides with the portion of the model with
the widest confidence intervals in the GMR model. The
assignments in components 2 and 3, represented by teal and
purple, lack a clear seasonal explanation, however.
We also analyze GMM soft assignments in the context of

meteorological data and model error as shown in Figures 5 and
6. Figure 5 presents GMM soft assignments, shown by color, as

a function of GMM inputs. Figure 6 presents GMM soft
assignments as a function of both model error and PurpleAir
PM2.5 data error. The size of each observation is scaled relative
to the probability that a given point belongs to the assigned
component.
Component 1, shown in pink, is associated with mid-June

through August of 2020 and is characterized by high RH, low
temperatures, and a positive PurpleAir PM2.5 error. The
positive error seen here is consistent with previous studies
which have shown that PurpleAir sensors overpredict PM2.5

concentrations at high RH due to hygroscopic growth of
particles.31 As PurpleAir monitors do not have a particle dryer
on the inlet, this is expected. In Figure 6b, we can see that this
positive bias was corrected to near zero. Component 2, shown
in teal, is characterized by low PurpleAir PM2.5 values, low
PurpleAir PM2.5 error, and low GMR-corrected PM2.5 error. As
component 2 solely consists of low PurpleAir PM2.5 values, it
may be acting as a “background” component for the model.
Component 3, shown in purple, is the smallest Gaussian

distribution represented in this model and correlates to dates
scattered throughout January and February of 2021. While this
component exists at relatively high temperatures and PurpleAir
PM2.5 concentrations, when looking at Figure 5, component 3
is not visually distinctive from other components when
considering meteorological variables. All of the observations
in this component, however, are PurpleAir PM2.5 values with a
large negative error as shown in Figure 6a. This suggests that
component 3 corresponds with very large reference grade
PM2.5 values which were underpredicted by the PurpleAir
monitor. This could possibly be attributed to a local source
generating small particles below the size detection limits of the
PurpleAir.
Another hypothesis for the negative bias associated with this

cluster is the impact of the Harmattan. During the Harmattan,
heavy winds contribute dust to ambient particulate matter. It
has been shown that the optical sensor within PurpleAir
monitors, PMS-5003, performs poorly when detecting particles
larger than approximately 0.8 μm.40 Additionally, during a dust
storm in Utah, Sayahi et al. found that PurpleAir monitors
failed to report high particulate matter concentrations.41 In this
study, it was hypothesized that larger particles from windblown
dust may have difficulty making the multiple 90-degree turns
between the PMS-5003 inlet and the optical sensor. Given the
90-degree turns between the PMS-5003 inlet and the light
sensor, we can also consider Mie theory’s proposition that
larger particles scatter less light per unit mass at 90 deg.
Component 3 may correspond to days when the PurpleAir
monitor struggled to detect high concentrations of windblown
dust with a larger count median diameter than that of
particulate matter measured under other conditions.
In Figure 6b, we can see that the model only incrementally

corrected this large negative PurpleAir PM2.5 error. This is
consistent with previous descriptions of the data series in
January and February of 2021, where the precision of the
confidence intervals and accuracy of fit were low. The fourth
component, shown in orange, is characterized by high

Figure 5. Gaussian mixture model soft assignments as a function of PurpleAir PM2.5, RH, and temperature. Assigned components, displayed with
color, are defined by the most probable Gaussian component to which an observation belongs. The size of each observation is scaled relative to the
probability that a given point belongs to the assigned component. Component 1 is shown in pink, component 2 in teal, component 3 in purple, and
component 4 in orange.

Figure 6. Gaussian mixture model soft assignments as a function of
PurpleAir PM2.5 and GMR-corrected PM2.5 error. Assigned
components, displayed with color, are defined by the most probable
Gaussian component to which an observation belongs. The size of
each observation is scaled relative to the probability that a given point
belongs to the assigned component. Component 1 is shown in pink,
component 2 in teal, component 3 in purple, and component 4 in
orange.
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temperatures, low to moderate RH, and moderate to high
Purple Air PM2.5. This component also correlates to the
aforementioned period with lower model precision and
accuracy (November 2020 to February 2021). From Figure
6b, we can see that while the model was able to correct the
error for many of the observations in component 4,
observations with moderate to high error exist, even after
calibration.
The high error between PurpleAir PM2.5 data and reference

grade PM2.5 data in components 3 and 4 suggest that PurpleAir
monitors are subject to high errors at high temperatures and
high PM2.5 concentrations. This finding is consistent with
previous studies.5,32 While components 3 and 4 look similar
climate-wise, a clear distinction is that component 3 consists of
only observations that largely underpredicted PM2.5, which is
not the case for component 4. This distinction is significant
enough for each component’s observations to be better
characterized by a differing distribution. The distinction
between components 3 and 4, however, could also be driven
by another variable for which we have no data, like particle size
distribution. Additionally, the model responsibilities generated
by the original GMM are made with both input and output
data, differing from responsibilities formulated by the GMR.
This is because the GMR is conditioned solely with input data.
Since visually component 3 is better characterized by a
relationship between the input and output data rather than
relationships between input data, the GMR, in comparison to
the GMM, may assign a higher responsibility to component 4
than to component 3. This would be because component 4 has
similar meteorological characteristics to component 3. This
may cause GMM characterized component 3 values to
demonstrate a weaker fit when GMR is applied, as seen in
Figure 6b.
Given PurpleAir sensitivities at both high RH and high

temperatures, the model was better able to correct the data
with high RH values compared to its correction of the data
with higher temperatures. There may be additional unmeas-
ured explanatory variables, such as wind speed or direction
during the Harmattan, disturbing the model’s effectiveness at
higher temperatures.
3.4. Model Comparison. Due to their well-documented

nature, MLR and random forest regression were initially
selected as methods of improving data correlation and
correcting error. The results of these efforts can be seen in
Table 1. Within the 80/20 training/testing data split, MLR
improved PM2.5 correlation to R2 = 0.81 and accuracy to MAE
= 2.8 μg m−3. The random forest model provided a similar
level of correlation and accuracy (R2 = 0.81 and MAE = 2.7 μg
m−3). These values contrast the GMR performance noted in
section 3.2, where correlation from the 80/20 training/test
split was improved to R2 = 0.88 and accuracy to MAE = 2.2 μg
m−3. While all three models reduced bias to nearly zero, the
bias of the GMR model was less than 60% of that of the MLR
and RF models. A full time series comparison of all three
models can be found in the Supporting Information.
For a more in-depth comparison, we can look at the results

of each model’s cross validation as shown in Table 2. Table 2
compares evaluation metrics of GMR to that of MLR and RF
and reports the percentage of training folds with superior
model performance. A full table of cross validation perform-
ance metrics can be found in the Supporting Information.
While the GMR had notably better correlation than MLR

and RF with respect to the 80/20 training/test split, within the

cross validation it only superseded MLR and RF correlation in
approximately half of the folds. Additionally, the range of R2

values within the GMR cross validation was greater than the
range of those for MLR and RF. This indicates inconsistencies
in the GMR models generated in the cross validation. This can
possibly be explained by each model’s mechanism. MLR and
RF work by trying to directly generalize the relationship
between variables, whereas GMR works by indirectly modeling
the relationship between variables by evaluating probability
density. Decreasing sample size increases deviations between
the sample and population probability density. With smaller
samples, the probability density models generated become
more sensitive to outliers skewing the distribution. The
inconsistences in the cross validation of the GMR are likely
due to the presence of so few observations from component 3
(the smallest component) in the training fold. Without
sufficient examples of component 3 in the initializing GMM,
the resulting GMR may characterize what the larger model
described with component 3, as members of other, dissimilar
components. While increasing the sample size of training data
improves the performance of most machine learning models,
the results of the cross validation imply that the benefit of
increasing training sample size is more notable for GMR than
that for MLR and RF.
Despite similar model correlation performances in the cross

validation, GMR consistently outperformed MLR in terms of
accuracy and bias as shown in Table 2. GMR also
outperformed RF in terms of accuracy and bias but to a less
notable extent than its comparison to MLR.
A key distinction between GMR, MLR, and RF is that GMR

models can be trained with more explanatory variables than
what is used for regression. This contrasts MLR and RF which
cannot tolerate missing inputs. Given this distinction, we
trained MLR models with subsets of explanatory variables to
compare model performance across missing variables. If we
train the MLR without temperature, we get a testing data
correlation and accuracy of R2 = 0.78 and MAE = 3.07 μg m−3.
This is a worse fit than removing temperature inputs from the
GMR derived from the GMM built with all explanatory
variables (Table 1). If we train the MLR without temperature
or RH, we get a testing data correlation and fit of R2 = 0.71 and
MAE = 3.43 μg m−3. This is a worse fit than removing
temperature and RH inputs from the GMR derived from the
GMM built with all explanatory variables (Table 1). If we train
the MLR without RH, we yield a testing data fit of MAE = 2.60
μg m−3 and R2 = 0.84. This is a worse fit than removing RH
inputs from the GMR derived from the GMM built with all
explanatory variables (Table 1) but is a better fit than the MLR
trained with all possible explanatory variables (Table 1). This
suggests that RH was not an important factor in the original
MLR model. This is in contrast with previous studies that have
shown that RH impacts the technology used by PurpleAir to
measure PM2.5.

5,31,39 The lack of benefit brought by RH to the

Table 2. Comparison of Model Performance during a 10-
Fold Cross Validation of Daily Training Data

% CV iterations

evaluation metric * = MLR * = RF

GMR R2 ≥ *R2 60% 50%
GMR MAE ≤ *MAE 90% 50%
GMR cvMAE ≤ *cvMAE 90% 70%
|GMR bias| ≤ |*bias| 60% 70%
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MLR model is likely a result of complex nonlinear relationships
between variables that MLR cannot capture. Additionally, an
MLR model inherently assumes that covariance between
explanatory variables is insignificant, but the correlation in
Figure 5a indicates that this is not a good assumption with
respect to temperature and RH. This suggests that MLR is not
a good physical model for the underlying relationships in the
data.

4. CONCLUSIONS
Air pollution is a global public health crisis that causes millions
of premature deaths in the world each year. This is a
particularly challenging issue in sub-Saharan Africa where
limited access to air quality monitoring creates a challenge of
quantifying air pollution exposure and impact. Here we
develop the first GMR model used to calibrate LCSs and
subsequently apply it to an LCS-reference grade monitor
collocation in Accra, Ghana. GMR is a regression method that
is derived from GMMs, which model the joint probability
density of input and output data. GMR proved more successful
in correcting PM2.5 data than both MLR and random forest
methods with an R2 of 0.88 compared to 0.81 and 0.81,
respectively. It also proved successful in correcting the LCS
PM2.5 error, reducing MAE to 2.2 μg m−3 from 6.2 μg m−3.
Additionally, when the GMR was applied to test data with
missing inputs, it was able to successfully produce concen-
tration estimates with correlation and accuracy similar to that
of MLR or RF, whereas those latter methods cannot operate
with incomplete input data. This is advantageous when
working with air quality monitoring data in sub-Saharan Africa
where there is limited data availability.
Due to GMR’s probabilistic nature, it is able to provide

confidence intervals for the model predictions, unlike MLR
and RF. The range of those 95% confidence intervals were
shown to include reference PM2.5 96% of the time. When
evaluating the components of the GMM used to derive the
GMR, component assignments were shown to match under-
lying climate characteristics, providing confidence that the
model can detect underlying relationships in the data. With
sufficient training data, a GMM may be able to have
components for different pollutant mixes and climates and
thus be applicable to multiple cities or regions. Future work,
however, is needed to investigate the site transferability of the
GMR model.
This work represents an important step in developing

methods to provide high quality, low cost, accessible air
pollution data to populations with limited access to reference
grade air pollution monitors. While GMR offers improved
model performance, its mechanism requires a more advanced
understanding of statistics when compared to MLR. MLR
remains advantageous for its simplicity and ease of under-
standing and may offer a more accessible understanding of
LCS calibration than GMR. MLR, however, may not be
suitable for data with heterogeneous correlations, like those
seen here. GMR may be an ideal next step when MLR fails to
meet desired performance goals or when provided a data set
with distinctive seasonality, like the presence of the Harmattan
in Accra. In the instance of a data set with ample missing data,
GMR may also be ideal. Given that regression can be
performed on any subset of inputs, GMR provides an
opportunity to train models including other types of air
pollution monitoring data, like emission source profiles, and
build an advanced process without limiting future model

applications. Future work, however, is needed to collect more
diverse air quality data to build such a model.
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